Sunday, 28 October 2018

mnistdeepauto analysis4

% rbm.m
% Version 1.000 
%
% Code provided by Geoff Hinton and Ruslan Salakhutdinov 
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied.  As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application.  All use of these programs is entirely at the user's own risk.

% This program trains Restricted Boltzmann Machine in which
% visible, binary, stochastic pixels are connected to
% hidden, binary, stochastic feature detectors using symmetrically
% weighted connections. Learning is done with 1-step Contrastive Divergence.   
% The program assumes that the following variables are set externally:
% maxepoch  -- maximum number of epochs
% numhid    -- number of hidden units 
% batchdata -- the data that is divided into batches (numcases numdims numbatches)
% restart   -- set to 1 if learning starts from beginning 

epsilonw      = 0.1;   % Learning rate for weights 
epsilonvb     = 0.1;   % Learning rate for biases of visible units 
epsilonhb     = 0.1;   % Learning rate for biases of hidden units 
weightcost  = 0.0002;   
initialmomentum  = 0.5;
finalmomentum    = 0.9;

[numcases numdims numbatches]=size(batchdata); %%100x784x600

if restart ==1,
  restart=0;
  epoch=1;

% Initializing symmetric weights and biases. 
  vishid     = 0.1*randn(numdims, numhid); %784x1000
  hidbiases  = zeros(1,numhid); % 1x1000
  visbiases  = zeros(1,numdims); % 1x784

  poshidprobs = zeros(numcases,numhid); %100x1000
  neghidprobs = zeros(numcases,numhid); %100x1000
  posprods    = zeros(numdims,numhid); %784x1000
  negprods    = zeros(numdims,numhid); %784x1000
  vishidinc  = zeros(numdims,numhid); %784x1000
  hidbiasinc = zeros(1,numhid); %1x1000
  visbiasinc = zeros(1,numdims); %1x784
  batchposhidprobs=zeros(numcases,numhid,numbatches); %100x1000x600
end

for epoch = epoch:maxepoch, % 1 : 10
 fprintf(1,'epoch %d\n',epoch); 
 errsum=0;
 for batch = 1:numbatches,
  fprintf(1,'epoch %d batch %d\n',epoch,batch);  

%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  data = batchdata(:,:,batch); % 100x784
  poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));    %100x784 * 784x1000 - 1x1000repmat->100x1000 = 100x1000
  batchposhidprobs(:,:,batch)=poshidprobs; %100x1000<-batch b="" nbsp="">
  posprods    = data' * poshidprobs; %784x100 * 100x1000 = 784x1000
  poshidact   = sum(poshidprobs); % 1x1000
  posvisact = sum(data); % 1x784

%%%%%%%%% END OF POSITIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  poshidstates = poshidprobs > rand(numcases,numhid); %100x1000 > 100x1000 = 100 x 1000

%%%%%%%%% START NEGATIVE PHASE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  negdata = 1./(1 + exp(-poshidstates*vishid' - repmat(visbiases,numcases,1))); % 100x1000 * 1000x784 - 1x784repmat->100x784 = 100 x 784
  neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1)));   % 100x784 * 784x1000 - 1x1000repmat->100x1000 = 100x1000
  negprods  = negdata'*neghidprobs; % 784x100 * 100x1000
  neghidact = sum(neghidprobs); % 1x1000
  negvisact = sum(negdata); % 1x784
keyboard()
%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  err= sum(sum( (data-negdata).^2 )); %1x1
  errsum = err + errsum;

   if epoch>5,
     momentum=finalmomentum;
   else
     momentum=initialmomentum;
   end;

%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    vishidinc = momentum*vishidinc + ...    % 784x1000
                epsilonw*( (posprods-negprods)/numcases - weightcost*vishid); % 784x 1000
    visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact); % 1x784 + 1x784 - 1x784
    hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact); % 1x1000 + 1x1000 - 1x1000

    vishid = vishid + vishidinc; % 784x1000 + 784x1000
    visbiases = visbiases + visbiasinc; % 1x784 + x784
    hidbiases = hidbiases + hidbiasinc; % 1x1000 + 1x1000 

%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  end
  fprintf(1, 'epoch %4i error %6.1f  \n', epoch, errsum);

end;