% randRBM: get randomized restricted boltzmann machine (RBM) model
%
% rbm = randRBM( dimV, dimH, type )
%
%
%Output parameters:
% dbn: the randomized restricted boltzmann machine (RBM) model
%
%
%Input parameters:
% dimV: number of visible (input) nodes
% dimH: number of hidden (output) nodes
% type (optional): (default: 'BBRBM' )
% 'BBRBM': the Bernoulli-Bernoulli RBM
% 'GBRBM': the Gaussian-Bernoulli RBM
%
%
%Version: 20130727
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Deep Neural Network: %
% %
% Copyright (C) 2013 Masayuki Tanaka. All rights reserved. %
% mtanaka@ctrl.titech.ac.jp %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function rbm = randRBM( dimV, dimH, type ) % 32V 16H - 16V 8H - 8V 4H
if( ~exist('type', 'var') || isempty(type) )
type = 'BBRBM';
end
if( strcmpi( 'GB', type(1:2) ) )
rbm.type = 'GBRBM';
rbm.W = randn(dimV, dimH) * 0.1;
rbm.b = zeros(1, dimH);
rbm.c = zeros(1, dimV);
rbm.sig = ones(1, dimV); % variance= sigma^2 mean=mu <-normal distribution="" nbsp="" p=""> % Gaussian function is the probability density function of the normal distribution
else
rbm.type = 'BBRBM';
rbm.W = randn(dimV, dimH) * 0.1;
rbm.b = zeros(1, dimH);
rbm.c = zeros(1, dimV);
end
-normal>