Thursday, 25 April 2024

A Hands on Analysis of a Backpropagation Example

A Handson Analysis of  a Backpropagation Example

Ali Rıza SARAL

 

I analized an MNIST number recognition program written in Python.  It uses backpropagation.

The code is written for Python 2.6 or 2.7. Michal Daniel Dobrzanski has a repository for Python 3

[here](https://github.com/MichalDanielDobrzanski/DeepLearningPython35).

 

 I found this code from # Code samples for "Neural Networks and Deep Learning".

This repository contains code samples for Nielsen’s book on ["Neural Networks

and Deep Learning"](http://neuralnetworksanddeeplearning.com).

MIT License

Copyright (c) 2012-2018 Michael Nielsen

It can easily be found on the internet...

 

I put sys.exit(1) commands in order to stop and check various variables.  I added the outputs at these points so that the flow of the program can easily be viewed.

 

I also added a full output of print statements that I added for the first epoche.

 

Cheers.

Ali R+

Runner.py--------------------------------------------------------------------------------------------

# -*- coding: utf-8 -*-

"""

Created on Sat Mar 23 17:38:51 2024

 

@author: ars

"""

 

import mnist_loader

    

training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

training_data = list(training_data)  # Convert zip object to list

validation_data = list(validation_data)  # Convert zip object to list

test_data = list(test_data)  # Convert zip object to list

 

    

import network

net = network.Network([784, 30, 10])

     #%%

net.SGD(training_data,30, 10, 3.0, test_data=test_data)

 

"""

runfile('C:/Users/ars/ARStensorflow/00vbt/ex1/runner.py', wdir='C:/Users/ars/ARStensorflow/00vbt/ex1')

Reloaded modules: mnist_loader, network

Epoch 0: 8076 / 10000

Epoch 1: 8277 / 10000

Epoch 2: 8734 / 10000

Epoch 3: 9251 / 10000

Epoch 4: 9336 / 10000

Epoch 5: 9383 / 10000

Epoch 6: 9385 / 10000

Epoch 7: 9407 / 10000

Epoch 8: 9426 / 10000

Epoch 9: 9429 / 10000

Epoch 10: 9444 / 10000

Epoch 11: 9442 / 10000

Epoch 12: 9422 / 10000

Epoch 13: 9482 / 10000

Epoch 14: 9464 / 10000

Epoch 15: 9445 / 10000

Epoch 16: 9465 / 10000

Epoch 17: 9470 / 10000

Epoch 18: 9496 / 10000

Epoch 19: 9490 / 10000

Epoch 20: 9477 / 10000

Epoch 21: 9481 / 10000

Epoch 22: 9486 / 10000

Epoch 23: 9508 / 10000

Epoch 24: 9462 / 10000

Epoch 25: 9477 / 10000

Epoch 26: 9477 / 10000

Epoch 27: 9470 / 10000

Epoch 28: 9478 / 10000

Epoch 29: 9463 / 10000

 

"""

Network.py------------------------------------------------------------------------------------------

"""

network.py

~~~~~~~~~~

 

A module to implement the stochastic gradient descent learning

algorithm for a feedforward neural network.  Gradients are calculated

using backpropagation.  Note that I have focused on making the code

simple, easily readable, and easily modifiable.  It is not optimized,

and omits many desirable features.

"""

 

#### Libraries

# Standard library

import random

import sys

 

# Third-party libraries

import numpy as np

 

class Network(object):

 

    def __init__(self, sizes):

        """The list ``sizes`` contains the number of neurons in the

        respective layers of the network.  For example, if the list

        was [2, 3, 1] then it would be a three-layer network, with the

        first layer containing 2 neurons, the second layer 3 neurons,

        and the third layer 1 neuron.  The biases and weights for the

        network are initialized randomly, using a Gaussian

        distribution with mean 0, and variance 1.  Note that the first

        layer is assumed to be an input layer, and by convention we

        won't set any biases for those neurons, since biases are only

        ever used in computing the outputs from later layers."""

        print("Sizes:", sizes)

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

        for bias in self.biases:

            print("bias.shape=",bias.shape)      

       

        print("Sizes[1:]:", sizes[1:])

          

        self.weights = [np.random.randn(y, x)

                        for x, y in zip(sizes[:-1], sizes[1:])]

       

        print("\nSizes[:-1]:", sizes[:-1])

        print("Sizes[1:]:", sizes[1:])

        for weight in self.weights:

            print("weight.shape=",weight.shape)

           

        """

        runcell(0, 'C:/Users/ars/ARStensorflow/00vbt/ex1/runner.py')

        Sizes: [784, 30, 10]

        bias.shape= (30, 1)

        bias.shape= (10, 1)

        Sizes[1:]: [30, 10]

 

        Sizes[:-1]: [784, 30]

        Sizes[1:]: [30, 10]

        weight.shape= (30, 784)

        weight.shape= (10, 30)

        """

           

    def feedforward(self, a):

        """Return the output of the network if ``a`` is input."""

        print("Input Layer Activation (a):")

        print("shape(a)=", np.shape(a))

 

 

        for i, (b, w) in enumerate(zip(self.biases, self.weights), 1):

             print("\nProcessing Layer:", i)

             print("shape Biases=", np.shape(b))

             print("shape Weights=", np.shape(w))

 

             z = np.dot(w, a) + b

             print("shape Weighted Input(z)=", np.shape(z))

 

             a = sigmoid(z)

             print("shape Output Activation (a)=", np.shape(a))

       

        #sys.exit(1)

        return a

    """

    runcell(1, 'C:/Users/ars/ARStensorflow/00vbt/ex1/runner.py')

    Input Layer Activation (a):

    shape(a)= (784, 1)

 

    Processing Layer: 1

    shape Biases= (30, 1)

    shape Weights= (30, 784)

    shape Weighted Input(z)= (30, 1)

    shape Output Activation (a)= (30, 1)

 

    Processing Layer: 2

    shape Biases= (10, 1)

    shape Weights= (10, 30)

    shape Weighted Input(z)= (10, 1)

    shape Output Activation (a)= (10, 1)

    An exception has occurred, use %tb to see the full traceback.

 

    SystemExit: 1

    """

 

 

    def SGD(self, training_data, epochs, mini_batch_size, eta,

        test_data=None):

        """Train the neural network using mini-batch stochastic

        gradient descent.  The ``training_data`` is a list of tuples

        ``(x, y)`` representing the training inputs and the desired

        outputs.  The other non-optional parameters are

        self-explanatory.  If ``test_data`` is provided then the

        network will be evaluated against the test data after each

        epoch, and partial progress printed out.  This is useful for

        tracking progress, but slows things down substantially."""

       

        print("\nSGD***************************************************")

        print("mini_batch_size=",mini_batch_size)

       

        if test_data:

            n_test = len(test_data)

           

        n = len(training_data)

        print("len(training_data)=",n)

        for j in range(epochs):  # Changed xrange to range

            random.shuffle(training_data)

            mini_batches = [

                training_data[k:k+mini_batch_size]

                for k in range(0, n, mini_batch_size)]  # Changed xrange to range

           

            print("shape(mini_batches)=", np.shape(mini_batches))

            #sys.exit(1)

            """

            SGD---------------

            mini_batch_size= 10

            len(training_data)= 50000

            shape(mini_batches)= (5000, 10, 2) 2-> x,y

            An exception has occurred, use %tb to see the full traceback.

            """

            ars2=0

            for mini_batch in mini_batches:

                ars2+=1

                print("ars2=",ars2)

                self.update_mini_batch(mini_batch, eta)

                sys.exit(1)

 

           

            if test_data:

                print("Epoch {0}: {1} / {2}".format(

                    j, self.evaluate(test_data), n_test))

            else:

                print("Epoch {0} complete".format(j))

               

               

 

    def update_mini_batch(self, mini_batch, eta):

        """Update the network's weights and biases by applying

        gradient descent using backpropagation to a single mini batch.

        The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``

        is the learning rate."""

        print("\nupdate_mini_batch////////////////////////////////////")

        nabla_b = [np.zeros(b.shape) for b in self.biases]

        nabla_w = [np.zeros(w.shape) for w in self.weights]

        print("shape nabla_b=",np.shape(nabla_b))

        print("shape nabla_w=",np.shape(nabla_w))

       

        ars=0

        for x, y in mini_batch:

            ars+=1

            print("\ncalling backprop #=",ars)

            delta_nabla_b, delta_nabla_w = self.backprop(x, y)

            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]

            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

           

        print("nabla_b[0]=",nabla_b[0])

        print("nabla_b[1]=",nabla_b[1])

        print("nabla_w[0]=",nabla_w[0])

        print("nabla_w[1]=",nabla_w[1])

       

        self.weights = [w-(eta/len(mini_batch))*nw

                        for w, nw in zip(self.weights, nabla_w)]

        self.biases = [b-(eta/len(mini_batch))*nb

                       for b, nb in zip(self.biases, nabla_b)]

        #sys.exit(1)

       

    def backprop(self, x, y):

        """Return a tuple ``(nabla_b, nabla_w)`` representing the

        gradient for the cost function C_x.  ``nabla_b`` and

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar

        to ``self.biases`` and ``self.weights``."""

        print("\nbackprop=====================================")

        nabla_b = [np.zeros(b.shape) for b in self.biases]

        nabla_w = [np.zeros(w.shape) for w in self.weights]

        print("xxxxxxxxxxxnabla_b=",nabla_b[:-3])

        print("nabla_w=",nabla_w[:-3])

        # feedforward

        print("\nfeedforward---------------------")

        activation = x

        activations = [x] # list to store all the activations, layer by layer

        zs = [] # list to store all the z vectors, layer by layer

        for b, w in zip(self.biases, self.weights):

            z = np.dot(w, activation)+b

            zs.append(z)

            activation = sigmoid(z)

            activations.append(activation)

        print("shape(zs)=", np.shape(zs))

        print("shape(activation)=", np.shape(activation))

        print("shape(activations)=", np.shape(activations))

        # backward pass

        print("\nbackward---------------------")

        delta = self.cost_derivative(activations[-1], y) * \

            sigmoid_prime(zs[-1])

        nabla_b[-1] = delta

        nabla_w[-1] = np.dot(delta, activations[-2].transpose())

        print("shape(delta)=",np.shape(delta))

        print("shape(nabla_b)=",np.shape(nabla_b))

        print("shape(nabla_w)=",np.shape(nabla_w))

        # Note that the variable l in the loop below is used a little

        # differently to the notation in Chapter 2 of the book.  Here,

        # l = 1 means the last layer of neurons, l = 2 is the

        # second-last layer, and so on.  It's a renumbering of the

        # scheme in the book, used here to take advantage of the fact

        # that Python can use negative indices in lists.

        for l in range(2, self.num_layers):  # Changed xrange to range

            print("-l=",-l)

            z = zs[-l]

            sp = sigmoid_prime(z)

            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

            nabla_b[-l] = delta

            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())

            if l<4 :              

                print("delta[{}] = {}".format(l, delta[-l]))

                #print("nabla_b[{}] = {}".format(l, nabla_b[-l][:-3]))

                #print("nabla_w[{}] = {}".format(l, nabla_w[-l][:-3]))

               

        return (nabla_b, nabla_w)

 

    def evaluate(self, test_data):

        """Return the number of test inputs for which the neural

        network outputs the correct result. Note that the neural

        network's output is assumed to be the index of whichever

        neuron in the final layer has the highest activation."""

        test_results = [(np.argmax(self.feedforward(x)), y)

                        for (x, y) in test_data]

        return sum(int(x == y) for (x, y) in test_results)

 

    def cost_derivative(self, output_activations, y):

        """Return the vector of partial derivatives \partial C_x /

        \partial a for the output activations."""

        return (output_activations-y)

 

#### Miscellaneous functions

def sigmoid(z):

    """The sigmoid function."""

    return 1.0/(1.0+np.exp(-z))

 

def sigmoid_prime(z):

    """Derivative of the sigmoid function."""

    return sigmoid(z)*(1-sigmoid(z))

 

"""

runfile('C:/Users/ars/ARStensorflow/00vbt/ex1/runner.py', wdir='C:/Users/ars/ARStensorflow/00vbt/ex1')

Reloaded modules: mnist_loader, network

Sizes: [784, 30, 10]

bias.shape= (30, 1)

bias.shape= (10, 1)

Sizes[1:]: [30, 10]

 

Sizes[:-1]: [784, 30]

Sizes[1:]: [30, 10]

weight.shape= (30, 784)

weight.shape= (10, 30)

 

SGD***************************************************

mini_batch_size= 10

len(training_data)= 50000

shape(mini_batches)= (5000, 10, 2)

ars2= 1

 

update_mini_batch////////////////////////////////////

shape nabla_b= (2,)

shape nabla_w= (2,)

 

calling backprop #= 1

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-1.42634488e-10]

 

calling backprop #= 2

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-1.6675494e-07]

 

calling backprop #= 3

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-6.69058141e-06]

 

calling backprop #= 4

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-0.00990081]

 

calling backprop #= 5

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-2.21166674e-13]

 

calling backprop #= 6

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [5.21994737e-06]

 

calling backprop #= 7

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-1.46279172e-09]

 

calling backprop #= 8

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [7.47492242e-08]

 

calling backprop #= 9

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-1.09874347e-09]

 

calling backprop #= 10

 

backprop=====================================

xxxxxxxxxxxnabla_b= []

nabla_w= []

 

feedforward---------------------

shape(zs)= (2,)

shape(activation)= (10, 1)

shape(activations)= (3,)

 

backward---------------------

shape(delta)= (10, 1)

shape(nabla_b)= (2,)

shape(nabla_w)= (2,)

-l= -2

delta[2] = [-0.00207019]

nabla_b[0]= [[-0.01325782]

 [-0.03262269]

 [-0.03594767]

 [ 0.00368335]

 [ 0.09522265]

 [-0.09147546]

 [-0.01036631]

 [ 0.16768215]

 [-0.09533466]

 [ 0.00056786]

 [-0.01581537]

 [ 0.01267168]

 [-0.00257171]

 [ 0.09161304]

 [-0.00379968]

 [ 0.02993509]

 [-0.01039408]

 [-0.053856  ]

 [-0.02370034]

 [-0.03059559]

 [-0.11553744]

 [ 0.00219626]

 [ 0.20589038]

 [-0.01510159]

 [ 0.01420204]

 [ 0.06503109]

 [-0.17590391]

 [-0.03317643]

 [-0.01197257]

 [-0.08747135]]

nabla_b[1]= [[0.36830155]

 [0.62675642]

 [0.68100886]

 [0.00181689]

 [0.04951175]

 [0.47319558]

 [0.85981884]

 [0.33877696]

 [0.31558633]

 [0.3640103 ]]

nabla_w[0]= [[0. 0. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]

 ...

 [0. 0. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]

 [0. 0. 0. ... 0. 0. 0.]]

nabla_w[1]= [[ 4.10015805e-01  3.22926842e-01  2.23404037e-01  2.18877662e-01

   2.70085532e-01  3.18373857e-02  3.52924774e-01  9.47840951e-02

   1.59868586e-01  4.77892724e-02  2.20288346e-01  2.20205925e-01

  -1.68261942e-02  3.00148440e-01  1.92237370e-02  1.42144195e-01

   2.30670517e-01  3.03449621e-01  1.52493627e-02  1.50987158e-01

   1.68088798e-01  1.42725187e-01  5.07676562e-02 -6.74804386e-05

   1.97445388e-02  2.00607563e-01  1.18179665e-01  3.81606047e-01

   1.72484435e-01 -7.02472066e-02]

 [ 5.53954755e-01  5.63129601e-01  4.63566614e-01  4.35228659e-01

   5.00773768e-01  3.55405686e-02  4.50396288e-01  2.81969035e-01

   1.52322864e-01  2.96873425e-01  2.81555015e-01  4.58461317e-01

   2.73101931e-01  4.73329622e-01  4.81376679e-02  4.52391721e-01

   2.15350865e-01  2.63431582e-01  1.71456348e-02  3.71569920e-01

   2.47275902e-01  3.13953178e-02  1.61893015e-01  9.59780389e-03

   3.23937381e-02  3.90550915e-01  2.13925323e-01  5.54998773e-01

   4.92759817e-01  1.43993109e-01]

 [ 6.16086888e-01  6.02604002e-01  5.37537213e-01  5.47739625e-01

   6.00823224e-01  7.10742376e-02  7.70878436e-01  2.10498456e-01

   1.97151373e-01  3.52736622e-01  4.84395298e-01  5.00352136e-01

   1.55482741e-01  5.81145995e-01 -1.08148860e-01  3.38641639e-01

   2.76317801e-01  3.50592185e-01  2.40462361e-02  4.66033878e-01

   2.64761425e-01  1.56685705e-01  1.56309513e-01 -1.06681221e-01

  -1.06243615e-01  3.48106487e-01  1.20492110e-01  6.84493280e-01

   4.54685392e-01  1.51535600e-01]

 [ 1.81767698e-03  1.63954575e-03  8.45787544e-04  1.50209055e-03

   7.12282995e-04  7.36863064e-05  1.42559910e-03  1.18807871e-03

   4.01618226e-04  2.33191992e-04  5.47004368e-04  1.43919597e-03

   1.23651581e-03  1.48510588e-03  7.55718779e-05  6.77655758e-04

   5.66081161e-04  9.58860915e-04  4.96835894e-05  3.02563859e-04

   3.98767564e-04 -3.57741365e-05  3.63975742e-04  1.87809475e-06

   4.43689259e-05  5.56522250e-04  8.41395617e-04  1.81339297e-03

   1.85298963e-03  2.47101392e-04]

 [ 1.94439021e-02  4.89760463e-02  1.24454742e-01 -7.92407401e-02

   6.08570458e-02 -2.11839865e-03  4.01604278e-02  1.25026192e-01

   1.32171376e-01 -8.82951231e-02  1.36229311e-01 -1.02288539e-01

  -3.32739987e-03 -2.49987223e-02 -1.49643101e-03 -8.03672884e-02

  -6.31984296e-03  3.65717561e-02 -1.46002147e-03  2.60672916e-02

  -7.76295902e-02  1.42819964e-01 -5.78882657e-02  8.88275228e-05

  -6.01227529e-03  4.38541440e-02  2.73708990e-04  3.35288397e-03

  -2.77810688e-02  4.60318291e-04]

 [ 4.54299849e-01  3.99142986e-01  2.35076136e-01  3.96136952e-01

   3.29510653e-01  1.04237984e-02  4.20897166e-01  2.49798459e-01

   8.93637190e-02  1.64013704e-01  1.67286863e-01  4.13558945e-01

   1.75480476e-01  4.31321943e-01  2.97122732e-02  2.00977999e-01

   1.60210728e-01  3.38856419e-01  1.29250425e-02  1.86653617e-01

   1.92044382e-01  2.01207009e-02  1.60278587e-01  1.14329229e-02

   2.50601189e-02  3.43704920e-01  1.72189596e-01  4.43404704e-01

   3.53722686e-01  3.30965866e-02]

 [ 7.26438390e-01  8.06274286e-01  4.86621269e-01  6.70054704e-01

   5.74081103e-01  5.56085447e-02  7.62946744e-01  4.06732950e-01

   2.03630890e-01  3.34200326e-01  4.28793400e-01  6.86806677e-01

   3.39252118e-01  7.67125687e-01  8.05907230e-02  5.05392890e-01

   3.79526873e-01  5.61154707e-01  2.25712780e-02  4.32248073e-01

   2.81019759e-01  1.43847117e-01  1.88166354e-01  2.41122918e-02

   6.44215402e-02  5.01391555e-01  2.48282226e-01  7.21868789e-01

   6.18708125e-01  1.09112722e-01]

 [ 1.14430196e-01  3.32483412e-01  6.14609665e-02  3.98638790e-01

   2.38280250e-01  4.47666721e-02  3.70386318e-01  1.56943973e-01

  -4.48693372e-02  2.53068353e-01  1.69090010e-01  4.36377888e-01

   1.93474746e-01  4.53510581e-01  1.01570738e-01  2.75188231e-01

   2.94291190e-01  3.45084058e-01  5.12236008e-03  2.18546578e-01

   6.94532403e-02  4.68230011e-02  7.51438959e-02  6.34173176e-02

   9.61252736e-02  2.85222148e-01  1.19664159e-01  1.25720761e-01

   2.59277421e-01  9.03950354e-02]

 [ 2.88058370e-01  3.03812804e-01  1.99450118e-01  1.55420516e-01

   2.11262547e-01  2.65573576e-02  1.83563674e-01  2.20535146e-01

   1.43914304e-01  9.17437533e-02  6.47602450e-02  1.47915954e-01

   2.51352124e-01  1.72069697e-01  7.58256310e-03  1.63989432e-01

   1.74382007e-02  1.58236675e-01  1.64225561e-03  1.65530666e-01

   3.89096521e-02  3.22221605e-02  5.88510658e-02  1.52274825e-04

   2.27319868e-03  1.08819243e-01  1.65643861e-01  2.88621521e-01

   2.72827422e-01  9.84375373e-02]

 [ 9.40141076e-02  4.36210985e-01  8.63798720e-02  2.28816776e-01

   2.99960206e-01  6.51496851e-02  8.56031711e-02  3.06853771e-01

   6.24451582e-02  4.43259288e-01 -9.20583316e-02  3.01430208e-01

   4.94280184e-01  2.98448455e-01  2.19879497e-01  4.72259197e-01

   5.00616961e-02  3.36038311e-01 -1.99755570e-02  4.71118109e-01

  -2.53260615e-02  1.17042481e-02  1.32364766e-01  1.04075860e-01

   1.29992669e-01  3.04113306e-01  1.89165779e-01  9.19560428e-02

   2.56775068e-01  2.17348900e-01]]

C:\ProgramData\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2009: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.

  result = asarray(a).shape

An exception has occurred, use %tb to see the full traceback.

 

SystemExit: 1

 

 

 

"""

mnist_loader.py------------------------------------------------------------------------------------

"""

mnist_loader

~~~~~~~~~~~~

 

A library to load the MNIST image data.  For details of the data

structures that are returned, see the doc strings for ``load_data``

and ``load_data_wrapper``.  In practice, ``load_data_wrapper`` is the

function usually called by our neural network code.

"""

 

#### Libraries

# Standard library

import pickle

import gzip

 

# Third-party libraries

import numpy as np

 

def load_data():

    """Return the MNIST data as a tuple containing the training data,

    the validation data, and the test data.

 

    The ``training_data`` is returned as a tuple with two entries.

    The first entry contains the actual training images.  This is a

    numpy ndarray with 50,000 entries.  Each entry is, in turn, a

    numpy ndarray with 784 values, representing the 28 * 28 = 784

    pixels in a single MNIST image.

 

    The second entry in the ``training_data`` tuple is a numpy ndarray

    containing 50,000 entries.  Those entries are just the digit

    values (0...9) for the corresponding images contained in the first

    entry of the tuple.

 

    The ``validation_data`` and ``test_data`` are similar, except

    each contains only 10,000 images.

 

    This is a nice data format, but for use in neural networks it's

    helpful to modify the format of the ``training_data`` a little.

    That's done in the wrapper function ``load_data_wrapper()``, see

    below.

    """

 

    with gzip.open('./data/mnist.pkl.gz', 'rb') as f:

        training_data, validation_data, test_data = pickle.load(f, encoding='latin1')

    return (training_data, validation_data, test_data)

 

def load_data_wrapper():

    """Return a tuple containing ``(training_data, validation_data,

    test_data)``. Based on ``load_data``, but the format is more

    convenient for use in our implementation of neural networks.

 

    In particular, ``training_data`` is a list containing 50,000

    2-tuples ``(x, y)``.  ``x`` is a 784-dimensional numpy.ndarray

    containing the input image.  ``y`` is a 10-dimensional

    numpy.ndarray representing the unit vector corresponding to the

    correct digit for ``x``.

 

    ``validation_data`` and ``test_data`` are lists containing 10,000

    2-tuples ``(x, y)``.  In each case, ``x`` is a 784-dimensional

    numpy.ndarry containing the input image, and ``y`` is the

    corresponding classification, i.e., the digit values (integers)

    corresponding to ``x``.

 

    Obviously, this means we're using slightly different formats for

    the training data and the validation / test data.  These formats

    turn out to be the most convenient for use in our neural network

    code."""

    tr_d, va_d, te_d = load_data()

    training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]

    training_results = [vectorized_result(y) for y in tr_d[1]]

    training_data = list(zip(training_inputs, training_results))  # Convert zip object to list

    validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]

    validation_data = list(zip(validation_inputs, va_d[1]))  # Convert zip object to list

    test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]

    test_data = list(zip(test_inputs, te_d[1]))  # Convert zip object to list

    return (training_data, validation_data, test_data)

 

def vectorized_result(j):

    """Return a 10-dimensional unit vector with a 1.0 in the jth

    position and zeroes elsewhere.  This is used to convert a digit

    (0...9) into a corresponding desired output from the neural

    network."""

    e = np.zeros((10, 1))

    e[j] = 1.0

    return e

 

exploreNetwork.py -------------------------------------------------------------------------------

# -*- coding: utf-8 -*-

"""

Created on Wed Apr 24 21:51:30 2024

 

@author: ars

To play and test the network.py ????????????????

"""

 

import numpy as np

 

"""Return a 10-dimensional unit vector with a 1.0 in the jth

    position and zeroes elsewhere.  This is used to convert a digit

    (0...9) into a corresponding desired output from the neural

    network."""

def vectorized_result(j):

    """Return a 10-dimensional unit vector with a 1.0 in the jth

    position and zeroes elsewhere.  This is used to convert a digit

    (0...9) into a corresponding desired output from the neural

    network."""

    e = np.zeros((3, 1))

    e[j] = 1.0

    return e

 

print(vectorized_result(2))

#%%

 

a = [1, 2, 3, 4, 5, 6]

print(a[-1:])

print(a[1])

 

for x, y in zip(a[:-1], a[1:]):

    print('x=%d y=%d' % (x, y))

#%%

sizes = [3, 2, 1]

biases = [y for y in sizes[1:]]

print("---------",biases)

weights = [(x, y) for x, y in zip(sizes[:-1], sizes[1:])]

print("sizes[:-1]=",sizes[:-1]," sizes[1:]", sizes[1:])

print("--------",weights)

   

#%%

import numpy as np

 

# Define the sigmoid function

def sigmoid(z):

    return 1 / (1 + np.exp(-z))

 

class NeuralNetwork:

    def __init__(self, sizes):

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

        self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

 

    def feedforward(self, a):

        """Return the output of the network if ``a`` is input."""

        for b, w in zip(self.biases, self.weights):

            z = np.dot(w, a) + b

            a = sigmoid(z)

        return a

 

# Assuming the example sizes and input data

sizes = [3, 2, 1]

a = np.array([[0.5], [0.5], [0.5]])

 

# Create the neural network

net = NeuralNetwork(sizes)

 

# Perform forward propagation

output = net.feedforward(a)

 

print("Output after forward propagation:")

print(output)

#%%

class NeuralNetwork:

    def __init__(self, sizes):

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

        self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

 

    def feedforward(self, a):

        """Return the output of the network if ``a`` is input."""

        print("Input Layer Activation (a):")

        print(a)

 

        for i, (b, w) in enumerate(zip(self.biases, self.weights), 1):

            print("\nProcessing Layer:", i)

            print("Biases (b) for Layer", i, ":")

            print(b)

            print("Weights (w) for Layer", i, ":")

            print(w)

 

            z = np.dot(w, a) + b

            print("Weighted Input (z) for Layer", i, ":")

            print(z)

 

            a = sigmoid(z)

            print("Output Activation (a) after applying activation function for Layer", i, ":")

            print(a)

 

        return a

 

# Example sizes and input data

sizes = [3, 2, 1]

a = np.array([[0.5], [0.5], [0.5]])

 

# Create the neural network

net = NeuralNetwork(sizes)

 

# Perform forward propagation

output = net.feedforward(a)

 

print("\nFinal Output after forward propagation:")

print(output)

 

"""

runcell(3, 'C:/Users/ars/ARStensorflow/00vbt/anamolyTransformer/convertNumOneOfALL.py')

Input Layer Activation (a):

[[0.5]

 [0.5]

 [0.5]]

 

Processing Layer: 1

Biases (b) for Layer 1 :

[[-0.34238311]

 [-0.31615907]]

Weights (w) for Layer 1 :

[[-0.84184229 -0.06860264 -0.35556292]

 [ 0.18949908  1.41720536  0.52521287]]

Weighted Input (z) for Layer 1 :

[[-0.97538703]

 [ 0.74979958]]

Output Activation (a) after applying activation function for Layer 1 :

[[0.27380806]

 [0.67913503]]

 

Processing Layer: 2

Biases (b) for Layer 2 :

[[0.06311896]]

Weights (w) for Layer 2 :

[[-1.74024052 -1.10110167]]

Weighted Input (z) for Layer 2 :

[[-1.16116963]]

Output Activation (a) after applying activation function for Layer 2 :

[[0.23845482]]

 

Final Output after forward propagation:

[[0.23845482]]

 

"""