backpropclassify.m
% Version 1.000
%
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied. As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application. All use of these programs is entirely at the user's own risk.
% This program fine-tunes an autoencoder with backpropagation.
% Weights of the autoencoder are going to be saved in mnist_weights.mat
% and trainig and test reconstruction errors in mnist_error.mat
% You can also set maxepoch, default value is 200 as in our paper.
maxepoch=2; %maxepoch=200;
fprintf(1,'\nTraining discriminative model on MNIST by minimizing cross entropy error. \n');
fprintf(1,'60 batches of 1000 cases each. \n');
load mnistvhclassify
load mnisthpclassify
load mnisthp2classify
makebatches;
[numcases numdims numbatches]=size(batchdata); % 100 784 600
N=numcases; % 100
%%%% PREINITIALIZE WEIGHTS OF THE DISCRIMINATIVE MODEL%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
w1=[vishid; hidrecbiases]; % 784 250 + 1 250 = 785 250
w2=[hidpen; penrecbiases]; % 250 250 + 1 250 = 251 250
w3=[hidpen2; penrecbiases2]; % 250 500 + 1 500 = 251 500
w_class = 0.1*randn(size(w3,2)+1,10); % randn(501,10) = 501 10
%%%%%%%%%% END OF PREINITIALIZATION OF WEIGHTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l1=size(w1,1)-1; % 784
l2=size(w2,1)-1; % 250
l3=size(w3,1)-1; % 250
l4=size(w_class,1)-1; % 500
l5=10;
test_err=[];
train_err=[];
for epoch = 1:maxepoch
%%%%%%%%%%%%%%%%%%%% COMPUTE TRAINING MISCLASSIFICATION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
err=0;
err_cr=0;
counter=0;
[numcases numdims numbatches]=size(batchdata); % 100 784 600
N=numcases; % 100
for batch = 1:numbatches % 1 : 600
data = [batchdata(:,:,batch)]; % 100 784
target = [batchtargets(:,:,batch)]; % 100 10 600
data = [data ones(N,1)]; % 100 785
w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs ones(N,1)]; % 100 785 * 785 250 += 100 251
w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; % 100 251 * 251 250 += 100 251
w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs ones(N,1)]; % 100 251 * 251 500 += 100 501
targetout = exp(w3probs*w_class); % 100 501 * 501 10 = 100 10
targetout = targetout./repmat(sum(targetout,2),1,10); % 100 10 = 100 10 ./ repmat ( 100 1), 1 10) = 100 10
[I J]=max(targetout,[],2); % 100 1 , 100 1 = 100 1 -->I has the value J has the sequence
[I1 J1]=max(target,[],2); % max(100 10,[],2) 100 1
counter=counter+length(find(J==J1)); % =6 for the first batch
err_cr = err_cr- sum(sum( target(:,1:end).*log(targetout))) ; %cross entrophy
end
train_err(epoch)=(numcases*numbatches-counter); % total number of errors for all the batches in this epoche
train_crerr(epoch)=err_cr/numbatches; % total cross enthropy error for the complete batchdata in this epoche
%%%%%%%%%%%%%% END OF COMPUTING TRAINING MISCLASSIFICATION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% COMPUTE TEST MISCLASSIFICATION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
err=0;
err_cr=0;
counter=0;
[testnumcases testnumdims testnumbatches]=size(testbatchdata); % 100 784 100
N=testnumcases; % 100
for batch = 1:testnumbatches % 1: 100
data = [testbatchdata(:,:,batch)]; % 100 784
target = [testbatchtargets(:,:,batch)]; % 100 10 = (100 10 100(:,:,batch)
data = [data ones(N,1)]; % 100 785
w1probs = 1./(1 + exp(-data*w1)); w1probs = [w1probs ones(N,1)]; % 100 785 *785 250 = 100 250 -> 100 251
w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; % 100 251 * 251 250 = 100 250 -> 100 251
w3probs = 1./(1 + exp(-w2probs*w3)); w3probs = [w3probs ones(N,1)]; % 100 251 * 251 50 = 100 50 -> 100 51
targetout = exp(w3probs*w_class); % 100 51 * 51 10 = 100 10
targetout = targetout./repmat(sum(targetout,2),1,10); % = 100 10 ./ repmat ( 100 1), 1 10) = 100 10
[I J]=max(targetout,[],2); % 100 1 , 100 1 = 100 1 -->I has the value J has the sequence
[I1 J1]=max(target,[],2); % max(100 10,[],2) 100 1
counter=counter+length(find(J==J1)); % =9 for the first batch
err_cr = err_cr- sum(sum( target(:,1:end).*log(targetout))); %cross entrophy
end
test_err(epoch)=(testnumcases*testnumbatches-counter); % total number of errors for all the batches in this epoche
test_crerr(epoch)=err_cr/testnumbatches; % total cross enthropy error for the complete batchdata in this epoche
fprintf(1,'Before epoch %d Train # misclassified: %d (from %d). Test # misclassified: %d (from %d) \t \t \n',...
epoch,train_err(epoch),numcases*numbatches,test_err(epoch),testnumcases*testnumbatches);
%%%%%%%%%%%%%% END OF COMPUTING TEST MISCLASSIFICATION ERROR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tt=0;
for batch = 1:numbatches/10
fprintf(1,'epoch %d batch %d\n',epoch,batch);
%%%%%%%%%%% COMBINE 10 MINIBATCHES INTO 1 LARGER MINIBATCH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tt=tt+1;
data=[];
targets=[];
for kk=1:10
data=[data
batchdata(:,:,(tt-1)*10+kk)]; % 1000 784
targets=[targets
batchtargets(:,:,(tt-1)*10+kk)]; % 1000 10
end
%%%%%%%%%%%%%%% PERFORM CONJUGATE GRADIENT WITH 3 LINESEARCHES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
max_iter=3;
if epoch<2 6="" fixed.="" holding="" irst="" nbsp="" original="" other="" p="" top-level="" update="" weights=""> N = size(data,1); % 1000 /1000 784)
XX = [data ones(N,1)]; % 1000 785
w1probs = 1./(1 + exp(-XX*w1)); w1probs = [w1probs ones(N,1)]; % 1000 785 * 785 250 = 1000 250 -> 1000 251
w2probs = 1./(1 + exp(-w1probs*w2)); w2probs = [w2probs ones(N,1)]; % 1000 251 * 251 250 = 1000 250 -> 1000 251
w3probs = 1./(1 + exp(-w2probs*w3)); %w3probs = [w3probs ones(N,1)]; % 1000 251 * 251 50 = 1000 50 -> 1000 51
VV = [w_class(:)']'; % 51 10 = 510 1
Dim = [l4; l5]; % 2 1
[X, fX] = minimize(VV,'CG_CLASSIFY_INIT',max_iter,Dim,w3probs,targets); % 510 1, 4 1 = min(510 1,'CG_CLASS...',3, 2 1, 1000 51, 1000 10
w_class = reshape(X,l4+1,l5); %reshape(X,51,10)= 51 10
else
VV = [w1(:)' w2(:)' w3(:)' w_class(:)']'; % 272060 1
Dim = [l1; l2; l3; l4; l5]; % 5 1
[X, fX] = minimize(VV,'CG_CLASSIFY',max_iter,Dim,data,targets); %[% 272060 1, 4 1]=mini..(272060 1,'CG_CLA..', 3, 5 1, 1000 784, 1000 10);
w1 = reshape(X(1:(l1+1)*l2),l1+1,l2); %reshape(272060(1 : 785*250,785,250) = 785 250
xxx = (l1+1)*l2; % 785 * 250
w2 = reshape(X(xxx+1:xxx+(l2+1)*l3),l2+1,l3); % reshape(X(251 : 251 * 250), 251, 250); = 251 250
xxx = xxx+(l2+1)*l3; % 785 * 250 + 251 * 250
w3 = reshape(X(xxx+1:xxx+(l3+1)*l4),l3+1,l4); % reshape(X(xxx+1: xxx+251*50, 251,50) = 251, 50
xxx = xxx+(l3+1)*l4; % 271550
w_class = reshape(X(xxx+1:xxx+(l4+1)*l5),l4+1,l5); % 51 10
end
%%%%%%%%%%%%%%% END OF CONJUGATE GRADIENT WITH 3 LINESEARCHES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
save mnistclassify_weights w1 w2 w3 w_class
save mnistclassify_error test_err test_crerr train_err train_crerr;
end
2>