Saturday, 7 December 2019

NetBeans RESTful example CustomerDB does notwork


NetBeans RESTful example CustomerDB does not work



NetBeans 8.1 New Project->Samples->WebServices->REST:CustomerDB(JAVAEE6) example does not work.
1-      First of all you have to make sure that the Derby database is working.
Select from Services menu->Databases->jdbc:derby://localhost:1527/sample[app on APP]
User = app pwd=app (in my case) (user and pwd must be the same, just type the uid to pwd)
2-      Select from services Menu->Servers->GlassFish Server and right click->Start
3-      After starting the server from Projects Menu Clean and Build CustomerDB.
4-      Select Deploy customerDB by rightclick on CustomerDB
5-      Select and run CustomerDB->js->testresbeans.html



6-      Select RESTful Web Services->CustomerFacadeREST with rightclick select Test ResourceUri

7-      This means the RESTful side is working.  But there is probably something wrong in the URI.
8-      Put an alert before:
alert(req); //ARSSSSSSSSSssssssssssssssss
        if(method == 'POST') {
            c = this.xhr.post(req, mimetype, params);
        } else if(method == 'PUT') {
            c = this.xhr.put(req, mimetype, params);
        } else if(method == 'GET') {
            c = this.xhr.get(req);
            //c = this.xhr.get(req, mimetype);
        } else if(method == 'DELETE') {
            c = this.xhr.delete_(req);
        }
9-      Yes, the URI is distorted.

10-   In order to locate the mistake:
var req;
        alert(path);//ARSSSSSSSSSssssssssssssssss
        alert(baseURL);//ARSSSSSSSSSssssssssssssssss
        if( ts.isURL(path) )
            req = path;
        else
            req = baseURL+escape(path);  // ARSSSSSSSSS
       
        //change url if there are template params
        if(tparams != null) {

11-   Temporary solution is:
var req;
        alert(path);//ARSSSSSSSSSssssssssssssssss
        alert(baseURL);//ARSSSSSSSSSssssssssssssssss
        if( ts.isURL(path) )
            req = path;
        else
            req = path;
            //req = baseURL+escape(path);  // ARSSSSSSSSS



 





Sunday, 24 February 2019

A simple REACT node.js example

 Create Hello.js REACT script
helloAli.js
'use strict';
//document.write("Hello World!");
const name = 'Ali Riza SARAL';
const element = &lth1&gtHello from {name}&lt/h1>

ReactDOM.render(
  element,
  document.getElementById('root')
);

Create the html that will insert the REACT jscript.
index4.html
&lt!doctype html&gt
&lthtml&gt

&lthead&gt
    &ltmeta charset="utf-8"&gt

    &lttitle&gtHello React!&lt/title&gt

    &ltscript src="https://unpkg.com/react@16/umd/react.development.js"&gt&lt/script&gt
    &ltscript src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"&gt&lt/script&gt
    &ltscript src="https://unpkg.com/babel-standalone@6.26.0/babel.js"&gt&lt/script&gt
&lt/head&gt

&ltbody&gt

    &ltdiv id="root"&gt&lt/div&gt

    &ltscript type="text/babel" src="helloAli.js"&gt&lt/script&gt

&lt/body&gt

&lt/html&gt

Create the server that will display the html.

var url = require('url');

// Create a server
http.createServer( function (request, response) { 
   // Parse the request containing file name
   var pathname = url.parse(request.url).pathname;
  
   // Print the name of the file for which request is made.
   console.log("Request for " + pathname + " received.");
  
   // Read the requested file content from file system
   fs.readFile(pathname.substr(1), function (err, data) {
      if (err) {
         console.log(err);
        
         // HTTP Status: 404 : NOT FOUND
         // Content Type: text/plain
         response.writeHead(404, {'Content-Type': 'text/html'});
      } else {           
         //Page found            
         // HTTP Status: 200 : OK
         // Content Type: text/plain
         response.writeHead(200, {'Content-Type': 'text/html'});  
        
         // Write the content of the file to response body
         response.write(data.toString());                   
      }
     
      // Send the response body
      response.end();
   });  
}).listen(8081);

// Console will print the message
console.log('Server running at http://127.0.0.1:8081/');

Run procedure in the same library of all the above:
1-      Start the server with
Node server
2-      Open a browser
3-      Run the REACT through html

Notes:  You do not have to use the  node.js server given here.  Any server Tomcat, Glassfish will work OK.
   



   

   



Tuesday, 19 February 2019

A short note on the Agile methods


Agile(Çevik) yöntemler Üzerine Kısa Bir Not

“Business people and developers must work together daily throughout the project.
İş süreçlerinin sahipleri ve yazılımcılar proje boyunca her gün birlikte çalışmalıdırlar”.
Bu madde bazı durumlarda Agile yöntemlerin uygulanmasını imkansız kılabilir.

Eğer müşteri tarafında sorunsuz bir ilgi ve destek yok ise Agile yöntemlerin uygulanması bir kaosa neden olabilir. 

Ayrıca müşteri isteklerinin tutarlı ve süreklilik taşıyan niteliklerde olması projenin başarısını doğrudan etkiler.  “İki tane hava trafik kontrolörünün olduğu yerde 3 tane görüş vardır”.

“Değişen gereksinimler yazılım sürecinin son aşamalarında bile kabul edilmelidir.
Çevik süreçler değişimi müşterinin rekabet avantajı için kullanır.”  Bunu her projede uygulamak mümkün olmayabilir.

“Çalışan yazılım, tercihen kısa zaman aralıkları belirlenerek birkaç haftada ya da birkaç ayda bir düzenli olarak müşteriye sunulmalıdır.”  Bu madde yalnız belirli bir büyüklüğe kadar ya da projenin sonuna doğru geçerli olabilir.

Kullanıcı gereksinimleri(user requirements) bütünlük ve doğruluk arzetmek zorunda değildir.
Kullanıcı gereksinimlerindeki eksikler ya da gözükmeyen yapısal gereksinimler yazılım gereksinimleri(software requirements) ile tamamlanır.  Kullanıcının yapısal teknikleri bilmesi mümkün değildir.  Dolayısıyla kullanıcının rolünü bu kadar abartmak sağlıklı sonuçlar vermeyebilir.




Friday, 1 February 2019

how to convert CPU usage to Movidius in Keras


I used a simple Keras example as a starting point. 
Develop Your First Neural Network in Python With Keras Step-By-Step
I took the first half of this example:

# MLP for Pima Indians Dataset Serialize to JSON and HDF5
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
import numpy
import os
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)
x=numpy.array([[0.42030057, 0.78084083, 0.76165254, 0.19794683, 0.78010274, 0.24512312, 0.17131911, 0.03071891]])
print(x)
yy=model.predict(x, batch_size=None, verbose=0, steps=None)
print(yy)

and I added prediction stuff:
x=numpy.array([[0.42030057, 0.78084083, 0.76165254, 0.19794683, 0.78010274, 0.24512312, 0.17131911, 0.03071891]])
print(x)
yy=model.predict(x, batch_size=None, verbose=0, steps=None)
print(yy)

the output follows:
runfile('C:/Users/ars/.spyder-py3/ars-test/keras_first_network.py', wdir='C:/Users/ars/.spyder-py3/ars-test')

768/768 [==============================] - 0s 13us/step

acc: 79.30%
[[0.42030057 0.78084083 0.76165254 0.19794683 0.78010274 0.24512312
  0.17131911 0.03071891]]
[[0.00283898]]
This was all done with Anaconda using Keras.  I put this to make a comparison later on.

pimasARS.py is the same as the Keras version.
# MLP for Pima Indians Dataset Serialize to JSON and HDF5
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
import numpy
import os
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)
# evaluate the model
scores = model.evaluate(X, Y, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

but it saves the model to Keras model files JSON and HDF5.

# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
    json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")

Movidius needs to work with TensorFlow  graph files.  So I used
Convert-pimas file from

How to run Keras model on Movidius neural compute stick


convert-pimas.py
from keras.models import model_from_json
from keras import backend as K
import tensorflow as tf
from keras.models import model_from_json
from keras import backend as K
import tensorflow as tf

model_file = "model.json"
weights_file = "model.h5"

with open(model_file, "r") as file:
    config = file.read()

K.set_learning_phase(0)
model = model_from_json(config)
model.load_weights(weights_file)

saver = tf.train.Saver()
sess = K.get_session()
saver.save(sess, "./TF_Model/tf_model")

fw = tf.summary.FileWriter('logs', sess.graph)
fw.close()
model_file = "model.json"
weights_file = "model.h5"

with open(model_file, "r") as file:
    config = file.read()

K.set_learning_phase(0)
model = model_from_json(config)
model.load_weights(weights_file)

saver = tf.train.Saver()
sess = K.get_session()
saver.save(sess, "./TF_Model/tf_model")

fw = tf.summary.FileWriter('logs', sess.graph)
fw.close()

if you notice, this program does not produce a TensorFlow
graph file.  This job is done with the statement below
which you can find in the Makefile.

.PHONY: compile
compile: weights
                test -f graph || ${NCCOMPILE} -s 12 ${MODEL_FILENAME} ${INPUT_NODE_FLAG} ${OUTPUT_NODE_FLAG}

mvNCCompile -s 12 TF_Model/tf_model.meta -in=dense_1_input -on=dense_3/Sigmoid
-in and –on parameters can be found in the logs/events.out.tfevents.1549033801.ars files

After this we have to prepare the Movidius stick, open, load etc.
İn the predict-pimas.py.

#!/usr/bin/env python3.5

# [NCSDK2 API](https://movidius.github.io/ncsdk/ncapi/ncapi2/py_api/readme.html)
from mvnc import mvncapi as mvnc
from keras import backend as K
import numpy
import cv2

# Using NCS Predict
# set the logging level for the NC API
# mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 0)

# get a list of names for all the devices plugged into the system
devices = mvnc.enumerate_devices()
if len(devices) == 0:
    print('No devices found')
    quit()

# get the first NCS device by its name.  For this program we will always open the first NCS device.
dev = mvnc.Device(devices[0])

# try to open the device.  this will throw an exception if someone else has it open already
try:
    dev.open()
except:
    print("Error - Could not open NCS device.")
    quit()

Once Movidius stick is ready we have to load the graph to it

# Read a compiled network graph from file (set the graph_filepath correctly for your graph file)
with open("graph", mode='rb') as f:
    graphFileBuff = f.read()

graph = mvnc.Graph('graph1')

then we have to put in the test data (the same as the complete Keras version)
# Allocate the graph on the device and create input and output Fifos
in_fifo, out_fifo = graph.allocate_with_fifos(dev, graphFileBuff)

testInput=numpy.array([[0.42030057, 0.78084083, 0.76165254, 0.19794683, 0.78010274, 0.24512312, 0.17131911, 0.03071891]])
# Write the input to the input_fifo buffer and queue an inference in one call
#graph.queue_inference_with_fifo_elem(in_fifo, out_fifo, testInput.astype('float32'), 'user object')
graph.queue_inference_with_fifo_elem(in_fifo, out_fifo, testInput.astype('float32'),'object1')

read the output and print
# Read the result to the output Fifo
output, userobj = out_fifo.read_elem()

# Deallocate and destroy the fifo and graph handles, close the device, and destroy the device handle
try:
    in_fifo.destroy()
    out_fifo.destroy()
    graph.destroy()
    dev.close()
    dev.destroy()
except:
    print("Error - could not close/destroy Graph/NCS device.")
    quit()

#print("NCS \r\n", output, '\r\nPredicted:',output.argmax())
print(output)

The output :
arsaral@ars:~/ncsdk/ncappzoo/apps/pimas$ python3  predict-pimas.py
Using TensorFlow backend.
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py:936: DeprecationWarning: builtin type EagerTensor has no __module__ attribute
  EagerTensor = c_api.TFE_Py_InitEagerTensor(_EagerTensorBase)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/util/tf_inspect.py:75: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
  return _inspect.getargspec(target)
/usr/local/lib/python3.5/dist-packages/mvnc/mvncapi.py:416: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  tensor = numpy.fromstring(tensor.raw, dtype=numpy.float32)
[0.00512314]
arsaral@ars:~/ncsdk/ncappzoo/apps/pimas$

A Keras only test output: [0.00283898]
A Movidius test output:  [0.00512314]




Monday, 28 January 2019

Implementation - How to Develop a Neural Machine Translation System from Scratch


IMPLEMENTATION: How to Develop a Neural Machine Translation System from Scratch

This is an implementation of Jason BROWNLEE’s program:
You can view the results at the bottom.

Trans.py
# -*- coding: utf-8 -*-
"""
Created on Sat Dec  8 22:37:54 2018

@author: Jason BROWNLEE
"""
import os; os.environ['KERAS_BACKEND'] = 'theano'
import string
import re
from pickle import dump
from unicodedata import normalize
from numpy import array

# load doc into memory
def load_doc(filename):
                # open the file as read only
                file = open(filename, mode='rt', encoding='utf-8')
                # read all text
                text = file.read()
                # close the file
                file.close()
                return text

# split a loaded document into sentences
def to_pairs(doc):
                lines = doc.strip().split('\n')
                pairs = [line.split('\t') for line in  lines]
                return pairs

# clean a list of lines
def clean_pairs(lines):
                cleaned = list()
                # prepare regex for char filtering
                re_print = re.compile('[^%s]' % re.escape(string.printable))
                # prepare translation table for removing punctuation
                table = str.maketrans('', '', string.punctuation)
                for pair in lines:
                               clean_pair = list()
                               for line in pair:
                                               # normalize unicode characters
                                               line = normalize('NFD', line).encode('ascii', 'ignore')
                                               line = line.decode('UTF-8')
                                               # tokenize on white space
                                               line = line.split()
                                               # convert to lowercase
                                               line = [word.lower() for word in line]
                                               # remove punctuation from each token
                                               line = [word.translate(table) for word in line]
                                               # remove non-printable chars form each token
                                               line = [re_print.sub('', w) for w in line]
                                               # remove tokens with numbers in them
                                               line = [word for word in line if word.isalpha()]
                                               # store as string
                                               clean_pair.append(' '.join(line))
                               cleaned.append(clean_pair)
                return array(cleaned)

# save a list of clean sentences to file
def save_clean_data(sentences, filename):
                dump(sentences, open(filename, 'wb'))
                print('Saved: %s' % filename)

# load dataset
filename = 'deu.txt'
doc = load_doc(filename)
# split into english-german pairs
pairs = to_pairs(doc)
# clean sentences
clean_pairs = clean_pairs(pairs)
# save clean pairs to file
save_clean_data(clean_pairs, 'english-german.pkl')
# spot check
for i in range(10):
                print('[%s] => [%s]' % (clean_pairs[i,0], clean_pairs[i,1]))
-----------------------------------------------------------------------------------------------------
Trans2.py
# -*- coding: utf-8 -*-
"""
Created on Sat Dec  8 23:02:11 2018

@author: ars
"""
import os; os.environ['KERAS_BACKEND'] = 'theano'
from pickle import load
from pickle import dump
from numpy.random import rand
from numpy.random import shuffle

# load a clean dataset
def load_clean_sentences(filename):
                return load(open(filename, 'rb'))

# save a list of clean sentences to file
def save_clean_data(sentences, filename):
                dump(sentences, open(filename, 'wb'))
                print('Saved: %s' % filename)

# load dataset
raw_dataset = load_clean_sentences('english-german.pkl')

# reduce dataset size
n_sentences = 10000
dataset = raw_dataset[:n_sentences, :]
# random shuffle
shuffle(dataset)
# split into train/test
train, test = dataset[:9000], dataset[9000:]
# save
save_clean_data(dataset, 'english-german-both.pkl')
save_clean_data(train, 'english-german-train.pkl')
save_clean_data(test, 'english-german-test.pkl')
-------------------------------------------------------------------------
Trans3.py
# -*- coding: utf-8 -*-
"""
Created on Sat Dec  8 23:05:25 2018

@author: ars
"""
import os; os.environ['KERAS_BACKEND'] = 'theano'
#os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'

from pickle import load
from numpy import array
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.utils.vis_utils import plot_model
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Embedding
from keras.layers import RepeatVector

from keras.layers import TimeDistributed
from keras.callbacks import ModelCheckpoint

import theano;
#print(theano.config)
import theano.tensor;
theano.config.cxx="C:\\Users\\ars\\Anaconda3\\Library\\mingw-w64\\bin\\g++.exe"

# load a clean dataset
def load_clean_sentences(filename):
                return load(open(filename, 'rb'))

# fit a tokenizer
def create_tokenizer(lines):
                tokenizer = Tokenizer()
                tokenizer.fit_on_texts(lines)
                return tokenizer

# max sentence length
def max_length(lines):
                return max(len(line.split()) for line in lines)

# encode and pad sequences
def encode_sequences(tokenizer, length, lines):
                # integer encode sequences
                X = tokenizer.texts_to_sequences(lines)
                # pad sequences with 0 values
                X = pad_sequences(X, maxlen=length, padding='post')
                return X

# one hot encode target sequence
def encode_output(sequences, vocab_size):
                ylist = list()
                for sequence in sequences:
                               encoded = to_categorical(sequence, num_classes=vocab_size)
                               ylist.append(encoded)
                y = array(ylist)
                y = y.reshape(sequences.shape[0], sequences.shape[1], vocab_size)
                return y

# define NMT model (Neural Machine Translation)
def define_model(src_vocab, tar_vocab, src_timesteps, tar_timesteps, n_units):
                model = Sequential()
                model.add(Embedding(src_vocab, n_units, input_length=src_timesteps, mask_zero=True))
                model.add(LSTM(n_units))
                model.add(RepeatVector(tar_timesteps))
                model.add(LSTM(n_units, return_sequences=True))
                model.add(TimeDistributed(Dense(tar_vocab, activation='softmax')))
                return model

# load datasets
dataset = load_clean_sentences('english-german-both.pkl')
train = load_clean_sentences('english-german-train.pkl')
test = load_clean_sentences('english-german-test.pkl')

# prepare english tokenizer
eng_tokenizer = create_tokenizer(dataset[:, 0])
eng_vocab_size = len(eng_tokenizer.word_index) + 1
eng_length = max_length(dataset[:, 0])
print('English Vocabulary Size: %d' % eng_vocab_size)
print('English Max Length: %d' % (eng_length))
# prepare german tokenizer
ger_tokenizer = create_tokenizer(dataset[:, 1])
ger_vocab_size = len(ger_tokenizer.word_index) + 1
ger_length = max_length(dataset[:, 1])
print('German Vocabulary Size: %d' % ger_vocab_size)
print('German Max Length: %d' % (ger_length))

# prepare training data
trainX = encode_sequences(ger_tokenizer, ger_length, train[:, 1])
trainY = encode_sequences(eng_tokenizer, eng_length, train[:, 0])
trainY = encode_output(trainY, eng_vocab_size)
# prepare validation data
testX = encode_sequences(ger_tokenizer, ger_length, test[:, 1])
testY = encode_sequences(eng_tokenizer, eng_length, test[:, 0])
testY = encode_output(testY, eng_vocab_size)

# define model
model = define_model(ger_vocab_size, eng_vocab_size, ger_length, eng_length, 256)
model.compile(optimizer='adam', loss='categorical_crossentropy')
# summarize defined model
print(model.summary())
plot_model(model, to_file='model.png', show_shapes=True)
# fit model
filename = 'model.h5'
checkpoint = ModelCheckpoint(filename, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
model.fit(trainX, trainY, epochs=30, batch_size=64, validation_data=(testX, testY), callbacks=[checkpoint], verbose=2)
------------------------------------------------------------------
Trans4.py
# -*- coding: utf-8 -*-
"""
Created on Sun Dec  9 20:50:52 2018

@author: ars
"""
import os; os.environ['KERAS_BACKEND'] = 'theano'
#import os
#os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin/'
from pickle import load
#from numpy import array
from numpy import argmax
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model
from nltk.translate.bleu_score import corpus_bleu
#import theano
#import theano.tensor
#theano.config.cxx=""
import theano;
#print(theano.config)
import theano.tensor;
theano.config.cxx="C:\\Users\\ars\\Anaconda3\\Library\\mingw-w64\\bin\\g++.exe"

# load a clean dataset
def load_clean_sentences(filename):
                return load(open(filename, 'rb'))

# fit a tokenizer
def create_tokenizer(lines):
                tokenizer = Tokenizer()
                tokenizer.fit_on_texts(lines)
                return tokenizer

# max sentence length
def max_length(lines):
                return max(len(line.split()) for line in lines)

# encode and pad sequences
def encode_sequences(tokenizer, length, lines):
                # integer encode sequences
                X = tokenizer.texts_to_sequences(lines)
                # pad sequences with 0 values
                X = pad_sequences(X, maxlen=length, padding='post')
                return X

# map an integer to a word
def word_for_id(integer, tokenizer):
                for word, index in tokenizer.word_index.items():
                               if index == integer:
                                               return word
                return None

# generate target given source sequence
def predict_sequence(model, tokenizer, source):
                prediction = model.predict(source, verbose=0)[0]
                integers = [argmax(vector) for vector in prediction]
                target = list()
                for i in integers:
                               word = word_for_id(i, tokenizer)
                               if word is None:
                                               break
                               target.append(word)
                return ' '.join(target)

# evaluate the skill of the model
def evaluate_model(model, tokenizer, sources, raw_dataset):
                actual, predicted = list(), list()
                for i, source in enumerate(sources):
                               # translate encoded source text
                               source = source.reshape((1, source.shape[0]))
                               translation = predict_sequence(model, eng_tokenizer, source)
                               raw_target, raw_src = raw_dataset[i]
                               if i < 10:
                                               print('src=[%s], target=[%s], predicted=[%s]' % (raw_src, raw_target, translation))
                               actual.append(raw_target.split())
                               predicted.append(translation.split())
                # calculate BLEU score
                print('BLEU-1: %f' % corpus_bleu(actual, predicted, weights=(1.0, 0, 0, 0)))
                print('BLEU-2: %f' % corpus_bleu(actual, predicted, weights=(0.5, 0.5, 0, 0)))
                print('BLEU-3: %f' % corpus_bleu(actual, predicted, weights=(0.3, 0.3, 0.3, 0)))
                print('BLEU-4: %f' % corpus_bleu(actual, predicted, weights=(0.25, 0.25, 0.25, 0.25)))

# load datasets
dataset = load_clean_sentences('english-german-both.pkl')
train = load_clean_sentences('english-german-train.pkl')
test = load_clean_sentences('english-german-test.pkl')
# prepare english tokenizer
eng_tokenizer = create_tokenizer(dataset[:, 0])
eng_vocab_size = len(eng_tokenizer.word_index) + 1
eng_length = max_length(dataset[:, 0])
# prepare german tokenizer
ger_tokenizer = create_tokenizer(dataset[:, 1])
ger_vocab_size = len(ger_tokenizer.word_index) + 1
ger_length = max_length(dataset[:, 1])
# prepare data
trainX = encode_sequences(ger_tokenizer, ger_length, train[:, 1])
testX = encode_sequences(ger_tokenizer, ger_length, test[:, 1])

# load model
model = load_model('model.h5')
# test on some training sequences
print('train')
evaluate_model(model, eng_tokenizer, trainX, train)
# test on some test sequences
print('test')
evaluate_model(model, eng_tokenizer, testX, test)

-----------------------------------------------------------------------------------------
OUTPUTS:
English Vocabulary Size: 2309
English Max Length: 5
German Vocabulary Size: 3657
German Max Length: 10

Neural Network Structureeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
_________________________________________________________________
Layer (type)                 Output Shape              Param #  
=================================================================
embedding_2 (Embedding)      (None, 10, 256)           936192   
_________________________________________________________________
lstm_3 (LSTM)                (None, 256)               525312   
_________________________________________________________________
repeat_vector_2 (RepeatVecto (None, 5, 256)            0        
_________________________________________________________________
lstm_4 (LSTM)                (None, 5, 256)            525312   
_________________________________________________________________
time_distributed_2 (TimeDist (None, 5, 2309)           593413   
=================================================================
Total params: 2,580,229
Trainable params: 2,580,229
Non-trainable params: 0
_________________________________________________________________
None

Train on 9000 samples, validate on 1000 samplessssssssssssssssssssssssssssssssssssss

Epoch 1/30
 - 76s - loss: 4.2931 - val_loss: 3.5462

Epoch 00001: val_loss improved from inf to 3.54621, saving model to model.h5
Epoch 2/30
 - 85s - loss: 3.3974 - val_loss: 3.4251

Epoch 00002: val_loss improved from 3.54621 to 3.42512, saving model to model.h5
Epoch 3/30
 - 87s - loss: 3.2527 - val_loss: 3.3515

Epoch 00003: val_loss improved from 3.42512 to 3.35154, saving model to model.h5
Epoch 4/30
 - 89s - loss: 3.1077 - val_loss: 3.2153

...
...
...
Epoch 27/30
 - 91s - loss: 0.5958 - val_loss: 1.9781

Epoch 00027: val_loss improved from 1.97907 to 1.97811, saving model to model.h5
Epoch 28/30
 - 92s - loss: 0.5441 - val_loss: 1.9675

Epoch 00028: val_loss improved from 1.97811 to 1.96752, saving model to model.h5
Epoch 29/30
 - 93s - loss: 0.4995 - val_loss: 1.9564

Epoch 00029: val_loss improved from 1.96752 to 1.95638, saving model to model.h5
Epoch 30/30
 - 92s - loss: 0.4564 - val_loss: 1.9632

Epoch 00030: val_loss did not improve from 1.95638

PREDICTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTt
runfile('C:/Users/ars/.spyder-py3/trans4.py', wdir='C:/Users/ars/.spyder-py3')

test with data that has been used in the training phase.
trainnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
src=[ich fuhle mich schuldig], target=[i feel guilty], predicted=[i feel guilty]
src=[tom hat das bewusstsein verloren], target=[tom passed out], predicted=[tom passed out]
src=[ich werde lernen], target=[i will learn], predicted=[i will learn]
src=[mir geht es gut], target=[im doing okay], predicted=[im doing well]
src=[ich bin zimmermann], target=[im a carpenter], predicted=[im a carpenter]
src=[stell es zuruck], target=[put it back], predicted=[put it back]
src=[es ist bewundernswert], target=[its admirable], predicted=[its admirable]
src=[ich habe das interesse verloren], target=[i lost interest], predicted=[i lost interest]
src=[tom hat sich gefugt], target=[tom obeyed], predicted=[tom obeyed]
src=[ich kann gut kochen], target=[im a good cook], predicted=[i may stay stay]
C:\Users\ars\Anaconda3\lib\site-packages\nltk\translate\bleu_score.py:503: UserWarning:
The hypothesis contains 0 counts of 2-gram overlaps.
Therefore the BLEU score evaluates to 0, independently of
how many N-gram overlaps of lower order it contains.
Consider using lower n-gram order or use SmoothingFunction()
  warnings.warn(_msg)
C:\Users\ars\Anaconda3\lib\site-packages\nltk\translate\bleu_score.py:503: UserWarning:
The hypothesis contains 0 counts of 3-gram overlaps.
Therefore the BLEU score evaluates to 0, independently of
how many N-gram overlaps of lower order it contains.
Consider using lower n-gram order or use SmoothingFunction()
  warnings.warn(_msg)
C:\Users\ars\Anaconda3\lib\site-packages\nltk\translate\bleu_score.py:503: UserWarning:
The hypothesis contains 0 counts of 4-gram overlaps.
Therefore the BLEU score evaluates to 0, independently of
how many N-gram overlaps of lower order it contains.
Consider using lower n-gram order or use SmoothingFunction()
  warnings.warn(_msg)
BLEU-1: 0.077905
BLEU-2: 0.000000
BLEU-3: 0.000000
BLEU-4: 0.000000

test with data that has never been introduced to the network before.
testttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
src=[ich habs im fernsehen gesehen], target=[i saw it on tv], predicted=[i saw it too]
src=[kommt zuruck nach hause], target=[come back home], predicted=[come back home]
src=[entlassen wir tom], target=[lets fire tom], predicted=[let tom tom]
src=[er lie einen drachen steigen], target=[he flew a kite], predicted=[hes seems dead]
src=[ich werde mit dem taxi fahren], target=[ill go by taxi], predicted=[ill get by day]
src=[ist es weit weg], target=[is it far away], predicted=[is it do it]
src=[ich bezahlte die rechnung], target=[i paid the bill], predicted=[i saved you]
src=[tom mag schnee], target=[tom likes snow], predicted=[tom likes snow]
src=[es ist], target=[its], predicted=[its important]
src=[schlafst du], target=[are you asleep], predicted=[do you]
BLEU-1: 0.081552
BLEU-2: 0.000000
BLEU-3: 0.000000
BLEU-4: 0.000000