Sunday, 24 February 2019

A simple REACT node.js example

 Create Hello.js REACT script
helloAli.js
'use strict';
//document.write("Hello World!");
const name = 'Ali Riza SARAL';
const element = &lth1&gtHello from {name}&lt/h1>

ReactDOM.render(
  element,
  document.getElementById('root')
);

Create the html that will insert the REACT jscript.
index4.html
&lt!doctype html&gt
&lthtml&gt

&lthead&gt
    &ltmeta charset="utf-8"&gt

    &lttitle&gtHello React!&lt/title&gt

    &ltscript src="https://unpkg.com/react@16/umd/react.development.js"&gt&lt/script&gt
    &ltscript src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"&gt&lt/script&gt
    &ltscript src="https://unpkg.com/babel-standalone@6.26.0/babel.js"&gt&lt/script&gt
&lt/head&gt

&ltbody&gt

    &ltdiv id="root"&gt&lt/div&gt

    &ltscript type="text/babel" src="helloAli.js"&gt&lt/script&gt

&lt/body&gt

&lt/html&gt

Create the server that will display the html.

var url = require('url');

// Create a server
http.createServer( function (request, response) { 
   // Parse the request containing file name
   var pathname = url.parse(request.url).pathname;
  
   // Print the name of the file for which request is made.
   console.log("Request for " + pathname + " received.");
  
   // Read the requested file content from file system
   fs.readFile(pathname.substr(1), function (err, data) {
      if (err) {
         console.log(err);
        
         // HTTP Status: 404 : NOT FOUND
         // Content Type: text/plain
         response.writeHead(404, {'Content-Type': 'text/html'});
      } else {           
         //Page found            
         // HTTP Status: 200 : OK
         // Content Type: text/plain
         response.writeHead(200, {'Content-Type': 'text/html'});  
        
         // Write the content of the file to response body
         response.write(data.toString());                   
      }
     
      // Send the response body
      response.end();
   });  
}).listen(8081);

// Console will print the message
console.log('Server running at http://127.0.0.1:8081/');

Run procedure in the same library of all the above:
1-      Start the server with
Node server
2-      Open a browser
3-      Run the REACT through html

Notes:  You do not have to use the  node.js server given here.  Any server Tomcat, Glassfish will work OK.
   



   

   



Tuesday, 19 February 2019

A short note on the Agile methods


Agile(Çevik) yöntemler Üzerine Kısa Bir Not

“Business people and developers must work together daily throughout the project.
İş süreçlerinin sahipleri ve yazılımcılar proje boyunca her gün birlikte çalışmalıdırlar”.
Bu madde bazı durumlarda Agile yöntemlerin uygulanmasını imkansız kılabilir.

Eğer müşteri tarafında sorunsuz bir ilgi ve destek yok ise Agile yöntemlerin uygulanması bir kaosa neden olabilir. 

Ayrıca müşteri isteklerinin tutarlı ve süreklilik taşıyan niteliklerde olması projenin başarısını doğrudan etkiler.  “İki tane hava trafik kontrolörünün olduğu yerde 3 tane görüş vardır”.

“Değişen gereksinimler yazılım sürecinin son aşamalarında bile kabul edilmelidir.
Çevik süreçler değişimi müşterinin rekabet avantajı için kullanır.”  Bunu her projede uygulamak mümkün olmayabilir.

“Çalışan yazılım, tercihen kısa zaman aralıkları belirlenerek birkaç haftada ya da birkaç ayda bir düzenli olarak müşteriye sunulmalıdır.”  Bu madde yalnız belirli bir büyüklüğe kadar ya da projenin sonuna doğru geçerli olabilir.

Kullanıcı gereksinimleri(user requirements) bütünlük ve doğruluk arzetmek zorunda değildir.
Kullanıcı gereksinimlerindeki eksikler ya da gözükmeyen yapısal gereksinimler yazılım gereksinimleri(software requirements) ile tamamlanır.  Kullanıcının yapısal teknikleri bilmesi mümkün değildir.  Dolayısıyla kullanıcının rolünü bu kadar abartmak sağlıklı sonuçlar vermeyebilir.




Friday, 1 February 2019

how to convert CPU usage to Movidius in Keras


I used a simple Keras example as a starting point. 
Develop Your First Neural Network in Python With Keras Step-By-Step
I took the first half of this example:

# MLP for Pima Indians Dataset Serialize to JSON and HDF5
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
import numpy
import os
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)
x=numpy.array([[0.42030057, 0.78084083, 0.76165254, 0.19794683, 0.78010274, 0.24512312, 0.17131911, 0.03071891]])
print(x)
yy=model.predict(x, batch_size=None, verbose=0, steps=None)
print(yy)

and I added prediction stuff:
x=numpy.array([[0.42030057, 0.78084083, 0.76165254, 0.19794683, 0.78010274, 0.24512312, 0.17131911, 0.03071891]])
print(x)
yy=model.predict(x, batch_size=None, verbose=0, steps=None)
print(yy)

the output follows:
runfile('C:/Users/ars/.spyder-py3/ars-test/keras_first_network.py', wdir='C:/Users/ars/.spyder-py3/ars-test')

768/768 [==============================] - 0s 13us/step

acc: 79.30%
[[0.42030057 0.78084083 0.76165254 0.19794683 0.78010274 0.24512312
  0.17131911 0.03071891]]
[[0.00283898]]
This was all done with Anaconda using Keras.  I put this to make a comparison later on.

pimasARS.py is the same as the Keras version.
# MLP for Pima Indians Dataset Serialize to JSON and HDF5
from keras.models import Sequential
from keras.layers import Dense
from keras.models import model_from_json
import numpy
import os
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10, verbose=0)
# evaluate the model
scores = model.evaluate(X, Y, verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

but it saves the model to Keras model files JSON and HDF5.

# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
    json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")

Movidius needs to work with TensorFlow  graph files.  So I used
Convert-pimas file from

How to run Keras model on Movidius neural compute stick


convert-pimas.py
from keras.models import model_from_json
from keras import backend as K
import tensorflow as tf
from keras.models import model_from_json
from keras import backend as K
import tensorflow as tf

model_file = "model.json"
weights_file = "model.h5"

with open(model_file, "r") as file:
    config = file.read()

K.set_learning_phase(0)
model = model_from_json(config)
model.load_weights(weights_file)

saver = tf.train.Saver()
sess = K.get_session()
saver.save(sess, "./TF_Model/tf_model")

fw = tf.summary.FileWriter('logs', sess.graph)
fw.close()
model_file = "model.json"
weights_file = "model.h5"

with open(model_file, "r") as file:
    config = file.read()

K.set_learning_phase(0)
model = model_from_json(config)
model.load_weights(weights_file)

saver = tf.train.Saver()
sess = K.get_session()
saver.save(sess, "./TF_Model/tf_model")

fw = tf.summary.FileWriter('logs', sess.graph)
fw.close()

if you notice, this program does not produce a TensorFlow
graph file.  This job is done with the statement below
which you can find in the Makefile.

.PHONY: compile
compile: weights
                test -f graph || ${NCCOMPILE} -s 12 ${MODEL_FILENAME} ${INPUT_NODE_FLAG} ${OUTPUT_NODE_FLAG}

mvNCCompile -s 12 TF_Model/tf_model.meta -in=dense_1_input -on=dense_3/Sigmoid
-in and –on parameters can be found in the logs/events.out.tfevents.1549033801.ars files

After this we have to prepare the Movidius stick, open, load etc.
İn the predict-pimas.py.

#!/usr/bin/env python3.5

# [NCSDK2 API](https://movidius.github.io/ncsdk/ncapi/ncapi2/py_api/readme.html)
from mvnc import mvncapi as mvnc
from keras import backend as K
import numpy
import cv2

# Using NCS Predict
# set the logging level for the NC API
# mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 0)

# get a list of names for all the devices plugged into the system
devices = mvnc.enumerate_devices()
if len(devices) == 0:
    print('No devices found')
    quit()

# get the first NCS device by its name.  For this program we will always open the first NCS device.
dev = mvnc.Device(devices[0])

# try to open the device.  this will throw an exception if someone else has it open already
try:
    dev.open()
except:
    print("Error - Could not open NCS device.")
    quit()

Once Movidius stick is ready we have to load the graph to it

# Read a compiled network graph from file (set the graph_filepath correctly for your graph file)
with open("graph", mode='rb') as f:
    graphFileBuff = f.read()

graph = mvnc.Graph('graph1')

then we have to put in the test data (the same as the complete Keras version)
# Allocate the graph on the device and create input and output Fifos
in_fifo, out_fifo = graph.allocate_with_fifos(dev, graphFileBuff)

testInput=numpy.array([[0.42030057, 0.78084083, 0.76165254, 0.19794683, 0.78010274, 0.24512312, 0.17131911, 0.03071891]])
# Write the input to the input_fifo buffer and queue an inference in one call
#graph.queue_inference_with_fifo_elem(in_fifo, out_fifo, testInput.astype('float32'), 'user object')
graph.queue_inference_with_fifo_elem(in_fifo, out_fifo, testInput.astype('float32'),'object1')

read the output and print
# Read the result to the output Fifo
output, userobj = out_fifo.read_elem()

# Deallocate and destroy the fifo and graph handles, close the device, and destroy the device handle
try:
    in_fifo.destroy()
    out_fifo.destroy()
    graph.destroy()
    dev.close()
    dev.destroy()
except:
    print("Error - could not close/destroy Graph/NCS device.")
    quit()

#print("NCS \r\n", output, '\r\nPredicted:',output.argmax())
print(output)

The output :
arsaral@ars:~/ncsdk/ncappzoo/apps/pimas$ python3  predict-pimas.py
Using TensorFlow backend.
/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py:936: DeprecationWarning: builtin type EagerTensor has no __module__ attribute
  EagerTensor = c_api.TFE_Py_InitEagerTensor(_EagerTensorBase)
/usr/local/lib/python3.5/dist-packages/tensorflow/python/util/tf_inspect.py:75: DeprecationWarning: inspect.getargspec() is deprecated, use inspect.signature() instead
  return _inspect.getargspec(target)
/usr/local/lib/python3.5/dist-packages/mvnc/mvncapi.py:416: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
  tensor = numpy.fromstring(tensor.raw, dtype=numpy.float32)
[0.00512314]
arsaral@ars:~/ncsdk/ncappzoo/apps/pimas$

A Keras only test output: [0.00283898]
A Movidius test output:  [0.00512314]