Wednesday, 28 February 2024

Simple Two Parallel Inputs and One Output Transformer Example

 SIMPLE TWO PARALLEL INPUTS AND ONE OUTPUT TRANSFORMER EXAMPLE

 

This is a simple example for a transformer taking 2 input arrays and producing a single output array.

I will come with further examples of using multiple layers and complex structures with transformer approach.  Please note that if one of the inputs were a picture and the other a text the transformer would recognise that what it sees a CAT... 

 

The program takes two number arrays of length 5.  It calculates the average of two numbers of the same sequence in these two arrays.  This is a working example.

 

# -*- coding: utf-8 -*-

"""

Created on Wed Feb 28 15:16:28 2024

 

@author: ars

"""

 

import tensorflow as tf

from tensorflow.keras import layers, Model

 

# Define the transformer layer

class TransformerLayer(layers.Layer):

    def __init__(self, d_model, num_heads, dff, rate=0.1):

        super(TransformerLayer, self).__init__()

 

        self.mha = layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)

        self.ffn = tf.keras.Sequential([

            layers.Dense(dff, activation='relu'),

            layers.Dense(d_model)

        ])

 

        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)

        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)

 

        self.dropout1 = layers.Dropout(rate)

        self.dropout2 = layers.Dropout(rate)

 

    def call(self, inputs, training=True):

        attn_output = self.mha(inputs, inputs)

        attn_output = self.dropout1(attn_output, training=training)

        out1 = self.layernorm1(inputs + attn_output)

 

        ffn_output = self.ffn(out1)

        ffn_output = self.dropout2(ffn_output, training=training)

        out2 = self.layernorm2(out1 + ffn_output)

 

        return out2

 

# Define the input shape

input_shape = (5,)

 

# Define the inputs

input1 = layers.Input(shape=input_shape, name='input1')

input2 = layers.Input(shape=input_shape, name='input2')

 

# Concatenate the inputs

concatenated = layers.Concatenate(axis=1)([input1, input2])

 

# Reshape for transformer input

reshape = layers.Reshape((2, 5))(concatenated)

 

# Transformer layer

transformer_layer = TransformerLayer(d_model=5, num_heads=2, dff=32)

 

# Apply transformer layer

transformed_output = transformer_layer(reshape)

 

# Global average pooling

average_output = layers.GlobalAveragePooling1D()(transformed_output)

 

# Output layer

output = layers.Dense(5, activation='linear')(average_output)

 

# Build the model

model = Model(inputs=[input1, input2], outputs=output)

 

# Compile the model

model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mae'])

 

# Print the model summary

model.summary()

#%%#---------------------------------------------------------------------------------------------

import numpy as np

 

# Generate some random test data

num_samples = 1000

input1_test = np.random.rand(num_samples, 5)

input2_test = np.random.rand(num_samples, 5)

 

# Calculate the average manually for comparison

average_manual = (input1_test + input2_test) / 2.0

 

# Check the shape of the test data

print("Shape of input1_test:", input1_test.shape)

print("Shape of input2_test:", input2_test.shape)

 

# Test the model

predictions = model.predict([input1_test, input2_test])

 

# Compare the predictions with the manual calculation

for i in range(5):

    print("\nSample", i+1, " - input1:", input1_test[i])

    print("Sample", i+1, " - input2:", input2_test[i])

 

    print("Sample", i+1, " - Manual Average:", average_manual[i], " - Predicted Average:", predictions[i])

 MODEL:---------------------------------------------------------------------

Model: "model"

__________________________________________________________________________________________________

 Layer (type)                Output Shape                 Param #   Connected to                 

==================================================================================================

 input1 (InputLayer)         [(None, 5)]                  0         []                           

                                                                                                  

 input2 (InputLayer)         [(None, 5)]                  0         []                           

                                                                                                 

 concatenate_1 (Concatenate  (None, 10)                   0         ['input1[0][0]',             

 )                                                                   'input2[0][0]']             

                                                                                                  

 reshape_1 (Reshape)         (None, 2, 5)                 0         ['concatenate_1[0][0]']      

                                                                                                 

 transformer_layer_1 (Trans  (None, 2, 5)                 612       ['reshape_1[0][0]']          

 formerLayer)                                                                                    

                                                                                                  

 global_average_pooling1d (  (None, 5)                    0         ['transformer_layer_1[0][0]']

 GlobalAveragePooling1D)                                                                         

                                                                                                  

 dense_4 (Dense)             (None, 5)                    30        ['global_average_pooling1d[0][

                                                                    0]']                          

OUTPUT:--------------------------------------------------------------------

runcell(1, 'C:/Users/ars/ARStensorflow/0parallelARS/untitled0.py')

Shape of input1_test: (1000, 5)

Shape of input2_test: (1000, 5)

32/32 [==============================] - 0s 3ms/step

Sample 1  - input1: [0.40338464 0.4324481  0.20288709 0.85402018 0.69681939]

Sample 1  - input2: [0.92298319 0.39169773 0.47804982 0.80640389 0.96490146]

Sample 1  - Manual Average: [0.66318391 0.41207291 0.34046846 0.83021203 0.83086043]  - Predicted Average: [ 0.41462776  0.16984153  1.310897    1.2504835  -0.22809528]

Sample 2  - input1: [0.7499501  0.1342272  0.09384698 0.32732734 0.6872341 ]

Sample 2  - input2: [0.76973532 0.10832048 0.32817306 0.60530674 0.61595368]

Sample 2  - Manual Average: [0.75984271 0.12127384 0.21101002 0.46631704 0.65159389]  - Predicted Average: [-0.4052685   0.01396421 -0.05984974  1.1452911  -0.23754917]

Sample 3  - input1: [0.3095081  0.25686936 0.83059622 0.20532096 0.80553001]

Sample 3  - input2: [0.66867723 0.38651418 0.36205749 0.91205604 0.13740754]

Sample 3  - Manual Average: [0.48909267 0.32169177 0.59632685 0.5586885  0.47146877]  - Predicted Average: [-0.49286604 -0.0415334  -0.49873334  0.53398705 -0.18983857]

Sample 4  - input1: [0.363748   0.96901881 0.760858   0.31562726 0.50555152]

Sample 4  - input2: [0.55109577 0.87754127 0.87178709 0.42192351 0.3426839 ]

Sample 4  - Manual Average: [0.45742188 0.92328004 0.81632255 0.36877539 0.42411771]  - Predicted Average: [-0.89761406  0.03873652 -1.0142024   1.4196234   0.16065012]

Sample 5  - input1: [0.15684707 0.07559663 0.26578657 0.00073441 0.31646286]

Sample 5  - input2: [0.17205819 0.57338043 0.40403394 0.49935905 0.76232375]

Sample 5  - Manual Average: [0.16445263 0.32448853 0.33491026 0.25004673 0.5393933 ]  - Predicted Average: [0.07035738 0.19064039 0.74532485 1.6838341  0.1143308 ]

 

runcell(1, 'C:/Users/ars/ARStensorflow/0parallelARS/untitled0.py')

Shape of input1_test: (1000, 5)

Shape of input2_test: (1000, 5)

32/32 [==============================] - 0s 3ms/step

 

Sample 1  - input1: [0.15694803 0.21293792 0.47923616 0.98860532 0.07281257]

Sample 1  - input2: [0.92906837 0.68171534 0.74526118 0.40535621 0.77818246]

Sample 1  - Manual Average: [0.5430082  0.44732663 0.61224867 0.69698076 0.42549751]  - Predicted Average: [-0.6867658  -0.46808803 -0.12430111  0.6539723  -0.44549745]

 

Sample 2  - input1: [0.28995958 0.38700105 0.7171286  0.8887408  0.10529674]

Sample 2  - input2: [0.26600798 0.42171587 0.38329856 0.51847964 0.07816427]

Sample 2  - Manual Average: [0.27798378 0.40435846 0.55021358 0.70361022 0.0917305 ]  - Predicted Average: [-1.2057661  -0.6692148  -1.1835346  -0.05061923 -0.49671552]

 

Sample 3  - input1: [0.31312179 0.59934665 0.64874245 0.26271201 0.52528184]

Sample 3  - input2: [0.28762358 0.36924366 0.05406523 0.9903467  0.01666271]

Sample 3  - Manual Average: [0.30037268 0.48429516 0.35140384 0.62652935 0.27097228]  - Predicted Average: [ 0.04163997 -0.26772195  0.6635431   0.24431774 -0.24538673]

 

Sample 4  - input1: [0.26770316 0.22319183 0.72713793 0.55752506 0.39540953]

Sample 4  - input2: [0.53671129 0.15183273 0.55340938 0.0380593  0.95026388]

Sample 4  - Manual Average: [0.40220723 0.18751228 0.64027366 0.29779218 0.6728367 ]  - Predicted Average: [-1.1873685  -0.5455142  -0.77665997  1.1318963  -0.22853746]

 

Sample 5  - input1: [0.15905445 0.74677288 0.99688255 0.38000617 0.08582965]

Sample 5  - input2: [0.09005614 0.42813253 0.72824425 0.28000251 0.36697629]

Sample 5  - Manual Average: [0.1245553  0.5874527  0.8625634  0.33000434 0.22640297]  - Predicted Average: [-1.498805   -0.7617358  -1.405476    0.60692716 -0.08873218]


Note: This transformer needs tuning or structural adjusting.

 

 

 

Wednesday, 14 February 2024

How to use a neural network model from an other program

 How to use a neural network model from an other program

 

# simple_sequential_network.py

from keras.models import Sequential

from keras.layers import Dense

def create_sequential_model(input_dim):

model = Sequential()

model.add(Dense(10, input_dim=input_dim, activation='relu')) # Example layer, adjust as needed

model.add(Dense(1, activation='sigmoid')) # Output layer, adjust as needed

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

from an other program: ----------------------------------

 

# make_predictions.py

import numpy as np

from simple_sequential_network import create_sequential_model

# Load the model

input_dim = 5 # Example input dimension, should match the input dimension of the model

model = create_sequential_model(input_dim)

# Load sample data for prediction

X_new = np.random.rand(10, input_dim) # Example: 10 new samples, each with input_dim features

# Make predictions

predictions = model.predict(X_new)

print("Predictions:")

print(predictions)

Bu çok küçük bir adım... Daha büyükleri için:

https://openai.com/research/techniques-for-training-large-neural-networks

https://medium.com/@TheHaseebHassan/techniques-to-train-large-neural-networks-e315f1edddd4

 

Kolaylıklar...

 

simple parallelism in neural networks

 simple parallelism in neural networks


A simple network with 2 parallel inputs compares two numbers and decides which one is bigger.  Inputs from 2 input layers are concatenated and then passed through a final dense layer.  I have tested the network without this final layer and saw that this final layer increases accuracy.

 

Without final layer:

Test Loss: 0.10025522857904434, Test Accuracy: 0.984000027179718

With final layer:

Test Loss: 0.08202387392520905, Test Accuracy: 0.9919999837875366

 

# -*- coding: utf-8 -*-

"""

Created on Wed Feb 14 17:37:39 2024

 

@author: ars

"""

 

from keras.layers import Input, Dense, concatenate

from keras.models import Model

 

# Define input shapes

input_shape1 = (1,)  # Shape for the first input

input_shape2 = (1,)  # Shape for the second input

 

# Define input layers

input_layer1 = Input(shape=input_shape1, name='input1')

input_layer2 = Input(shape=input_shape2, name='input2')

 

# Define first parallel layer

dense_layer1 = Dense(64, activation='relu')(input_layer1)

 

# Define second parallel layer

dense_layer2 = Dense(64, activation='relu')(input_layer2)

 

# Concatenate the outputs of the two parallel layers

concatenated_layers = concatenate([dense_layer1, dense_layer2])

 

# Add an extra dense layer

extra_dense_layer = Dense(32, activation='relu')(concatenated_layers)

 

# Output layer

output_layer = Dense(1, activation='sigmoid', name='output')(extra_dense_layer)

 

# Create the model

model = Model(inputs=[input_layer1, input_layer2], outputs=output_layer)

 

# Compile the model

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

 

# Print model summary

model.summary()

#%%

import numpy as np

 

# Generate training data

num_samples = 1000

X1_train = np.random.rand(num_samples, 1) * 100  # Random numbers between 0 and 100

X2_train = np.random.rand(num_samples, 1) * 100  # Random numbers between 0 and 100

y_train = (X1_train > X2_train).astype(int)  # 1 if first number is greater, 0 otherwise

 

# Train the model

model.fit([X1_train, X2_train], y_train, epochs=10, batch_size=32, validation_split=0.2)

#%%

# Make predictions for numbers 12 and 34

input_data1 = np.array([[12.0]])

input_data2 = np.array([[34.0]])

 

predictions_12 = model.predict([input_data1, input_data2])

print("Prediction for 12 and 34:", predictions_12)

 

# Make predictions for numbers 34 and 12 (swapping the order)

input_data1_swapped = np.array([[34.0]])

input_data2_swapped = np.array([[12.0]])

 

predictions_34 = model.predict([input_data1_swapped, input_data2_swapped])

print("Prediction for 34 and 12:", predictions_34)

#%%

# Generate test data

num_test_samples = 500

X1_test = np.random.rand(num_test_samples, 1) * 100  # Random numbers between 0 and 100

X2_test = np.random.rand(num_test_samples, 1) * 100  # Random numbers between 0 and 100

y_test = (X1_test > X2_test).astype(int)  # 1 if first number is greater, 0 otherwise

 

# Evaluate the model on test data

loss, accuracy = model.evaluate([X1_test, X2_test], y_test)

print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

 

runfile('C:/Users/ars/ARStensorflow/0parallelARS/parallelLayersAddFinalLayer.py', wdir='C:/Users/ars/ARStensorflow/0parallelARS')

Model: "model_3"

__________________________________________________________________________________________________

 Layer (type)                Output Shape                 Param #   Connected to                 

==================================================================================================

 input1 (InputLayer)         [(None, 1)]                  0         []                           

                                                                                                  

 input2 (InputLayer)         [(None, 1)]                  0         []                           

                                                                                                  

 dense_8 (Dense)             (None, 64)                   128       ['input1[0][0]']             

                                                                                                 

 dense_9 (Dense)             (None, 64)                   128       ['input2[0][0]']             

                                                                                                 

 concatenate_3 (Concatenate  (None, 128)                  0         ['dense_8[0][0]',            

 )                                                                   'dense_9[0][0]']            

                                                                                                  

 dense_10 (Dense)            (None, 32)                   4128      ['concatenate_3[0][0]']      

                                                                                                 

 output (Dense)              (None, 1)                    33        ['dense_10[0][0]']           

                                                                                                 

==================================================================================================

Total params: 4417 (17.25 KB)

Trainable params: 4417 (17.25 KB)

Non-trainable params: 0 (0.00 Byte)

__________________________________________________________________________________________________

Epoch 1/10

25/25 [==============================] - 2s 14ms/step - loss: 0.6836 - accuracy: 0.8263 - val_loss: 0.1272 - val_accuracy: 0.9800

Epoch 2/10

25/25 [==============================] - 0s 4ms/step - loss: 0.1112 - accuracy: 0.9625 - val_loss: 0.0992 - val_accuracy: 0.9850

Epoch 3/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0861 - accuracy: 0.9850 - val_loss: 0.0839 - val_accuracy: 0.9800

Epoch 4/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0717 - accuracy: 0.9900 - val_loss: 0.0709 - val_accuracy: 1.0000

Epoch 5/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0671 - accuracy: 0.9862 - val_loss: 0.0758 - val_accuracy: 0.9700

Epoch 6/10

25/25 [==============================] - 0s 5ms/step - loss: 0.0609 - accuracy: 0.9850 - val_loss: 0.0604 - val_accuracy: 0.9950

Epoch 7/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0566 - accuracy: 0.9950 - val_loss: 0.0572 - val_accuracy: 0.9850

Epoch 8/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0536 - accuracy: 0.9912 - val_loss: 0.0528 - val_accuracy: 1.0000

Epoch 9/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0553 - accuracy: 0.9862 - val_loss: 0.0504 - val_accuracy: 0.9950

Epoch 10/10

25/25 [==============================] - 0s 4ms/step - loss: 0.0485 - accuracy: 0.9887 - val_loss: 0.0497 - val_accuracy: 0.9850

1/1 [==============================] - 0s 105ms/step

Prediction for 12 and 34: [[0.00312641]]

1/1 [==============================] - 0s 34ms/step

Prediction for 34 and 12: [[0.99910635]]

16/16 [==============================] - 0s 2ms/step - loss: 0.0456 - accuracy: 0.9960

Test Loss: 0.045580483973026276, Test Accuracy: 0.9959999918937683